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INTRODUCTION

This study was undertakern at the reguest of ihe Selected Systems Lffec-
tiveness Program (SSEP)} of +he Joint Technical Coordinating Group for
Munitions Effectiveness (JTCG/ME). The study is an effort to determine
the effectiveness of prasent Department of Defense methodoiogy in de-
termining or predicting the Jiffusion of chemicals and/or radiolcgical
matter in the atmosphere. In par~icular, the study shows the extent

*o which a difference in tempera:ure between two ievels (~ar the ground
(static stability) or dymamic stahility (ratio z/L) is related to the
governi.g parameters of turbulence in the diffusion models considered.

D1SCUSSION

Haugen and Fuquay [ J pointed out that one shouid consider several
meteorological parameters in characterizing the diffusivse power of the
atmosphere. Among these parameters are the following:

I. The mean wind velecity, determining tie path of the clcud Zlown-
wind from the source and the distribution of particles along the meen
wind path. In the case of a continuous source this downwind transport
results in a lower concentration of particles as the mean wind increases.

2. The RMS (standarc deviation) of the wind direction (gg), determin-
ing the shape and distortion of the cloud, and in a sense serving as an
indication of horizontal mixing.

3. The RMS {sianward deviation) of the veitical wind direction

€
(og), devermining the dJispersion of the cloud in the vertical.

4. The vertical temperature gradient (AT) as an indicator of verti-
cal mixing. |f the tumperature increases with height, the vertical mixing
is limited to mecharical turbulence transport, whereas both mechanical
and convective mixing generally occur during ncn-inversion ccenditions.

Relationships between the four parameters discussed above have been
examined by Haugen and uguay [1] and Record et al. [2]. Mcdels which
quantitatively predict vurbulent diffusion often assume that these
relationships enist. In particular, the United States Army Combat Devel-
opment Command's Field Manual 3-10, "Employment of Chemical and Biological
Agents," utilizes a AT between heights of 0.5 and 4.0 meters to determine
the horizontal and vertical rates of iurbtulent mixing. Various levels
have been used for the measurement of the temperature gradient; e.g.,
project Ocean Breeze and Dry Gulch [[1] used temperatures at heights of
2 and 17 meters. More receatly, Record et al. [2] used heights of
approximately 3 and 20 reters. The actual ieveis at which these fempera-
ture measurements were made were based primarily on existing instrumentation
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at the site. Because of the highly varying conditions otserved near
the surface, there is a need to investigate the effects of choice of
heights on furbutent diffusion parameters.

SOME FUNDAMENTAL CONCEPTS

A. Wind and Its Variability

Wind is i-itiated by pressure forces which are crested by lensity gradi-
ents resulting irom differontial hoating. [:. i: ~¢Jitied by tne rotation
of the earth, frictional effects, and bv centrifugal forces due ic *+he
curvature of the air trajectory. In the surtace boundary layer curvature
and coriolis effects often may be neclect2¢. The speed and direction

of the wind then depends primarily os th2 magnitude and direction ot the
pressure gradient force, and on the properties of the surface which
determine the magnitude of the fricticnal force.

The influence of friction decreases with altitude and may vary with
horizontal distance. When the surface is rough, the wind speed increases
rapidly at heights just 5 few meters above the ground and less rapialy

at greater heights. When the ground is smooth, the increase of wind
speed with height is less pronounced but is still greater in the lowest
few meters. Mechanical furbulence created by roughness elements decrezses
with height more rapidly over 2 rough surface than a smooth surface.

When the degree of surface rcughness changes horizontally, changes in
wind and the intensity of turpulence at o given height result. Surface
features such as hiliocks, vegetation, and changes in other lerrain fea-
tures such as soil composition (which may lead to differential heating
and variations in the pressure gradient force) Induce spatial variations
in wind speed and turbulence.

At present, it is not possible to determine analyticaily the micro- and
mesoscale forces in space and time which affect the wind. It is possible,
however, to determine the average magnitude of the forces in space, and
hence the average wind may be determined with reasorable accuracy. Varia-
tions in the wind in both space and time within local areas are usually
determined statistically, leaving much to be desired in terms of accuracy.
It is this variability in wind which leads to extreme complexities in
problems of diffusion and trarsport of aiiborne substances, impact pre-
dictions of unguided rockets, and numerous and varied meteorological
problems, sucn as heat and momentum transfer and the coupling actions
between layers of the atmosphere with differing wind speeds and stabiliiy.

B. Definition of Turbulence

The vector wind can be written as
> > >

V=V+y! (1)
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where The bar denotes an average value, an arrow a vector quantity (the
absence of an arrow denotes a scalar quantity), and the prime a devia-
tior from the average. Equation (I) may be written in cowponent form as

u=uy+y'
V=yv+ vt (2)
w=w+ w

where u, \, and w refer fo the components of the wind alorg the ortho-
gonal axes x, y, and z, respectively. Ueviations from the average are
referred to s fturbulence and represent that portion of the wind which
must be treared stavistically. The average may or msv not be = func-
tion of time. A hypothetical time trace of wind speed showing u and u'
at a given locaiion near the ground is illustrated in Figure . The
variations in spead are caused by variations in the forces discussed
above.

C. Factors Responsible for Turbulence

A convenient wiy of lcoking at the rate of growth and decay of turbulent
energy is to examine the terms in the eddy kinetic energy eguation.
Lumley and Panofsky [3] wrote thic equation in the simplified form

(A) (B) () (D)
= 2
D(KE") = oK, [V {|° _ Kypg 236 _ (3)
Dt n Iz | 7 oz ¢

Here (KE') is the average kinetic energy of the three components of
turbulence, K.l and K atg.The eddy exchange coefficients for heaT and
momentum, respecflveiy, g is an average pofenTIaI temperature in degrees
Kelvin, B’lc an average dens:ty, g is gravity, & is the mean wind velo-
city, z is height, ande represents the dissipation cf mechanical energy
into heat. The terms comprising this equation are interpreted as fo!lows:

. Term (A) represents the time-rate-of-change of the average
turbulent energy following the mean motion. Under equilibrium conditions
and neglecting any advective processes, this term will be zero. A posi-
tive value of term (A} represents the growth and a negative value the
cecay of turtulent energy.

N




A SSheat iV, it i -
5‘55 e 2pipile: o e - A
14

S vRATTY
be oW

'

e

u(t)f q(t)

I u'(t)

Time —>»

Figure L. TIME TRACE OF WIND SPEED SHOWING
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L




LSRR RS

K
,1

ARSI PR D R

8 PR BTSRRI R

Sk g sy S G PERITE ¥ SOAGT e SO TS A S SR A1
-

LEES

Mogar v

PR TR PONG (T B v | Lt et kg

2. Term (B) represents the work done by the turoulent stresses
against the rates of mean strain. This term is usually positive and
thus contributes to the growth of turbuient energy.

3. Term (C) represents the work done against buoyancy. This term
can be an energy source or sink depending on the gradient of potential
temperature, and it may be negligible v3en the gradient vanishes.

4. Term (D) represents the rate of dissipation of turbulent kinetic
ersrgy. Since dissipation is always a positive quantity, the negative
sign makes the oniire term an energy sink.

Richardson (see Sutton [4]) postulated that the state of turtulence can

be determined from the ratio of term C to term B in Eq. (3), viz.,

Rt = Ku 8 35y02 (4)
5 . =
“w (}av/az])?

Rf is referredto as the flux Richardson number. |f it is assumed that
Ky/Kyp = |, then Eq. (4) becomes the gradient Richardson number, Ri. |If

Rf =1, then the buoyancy forces remove turbulent energy at the same

rate that it is being produced by the shearing stresses. This does not
mean a1 Rf = | is a critical value for predicting the onset of turbulent
moticn but rather ihe condition for equilibrium. It is ciear, however,
that Rf <| indicates fturbulent energy growth and Rf > | indicates decay.

It is also possible to express Rf as « function of height A non-

dimensional form using similarity theory [3]. A non-dimensional wind
shear, S, can be defined as

kz 3V (5)
9z

w
1}
o
N

where k is von Karman's constant, u* is the fricrion velocity, and the
other variabies are as previously defined. A scaiing length, L, defined
by Monin and Obukhov (see Lumley and Panofsky [3]), is given by

Copbu*’
Lz- P° (6)
kgH

where Co is the specific heat of zir at constant pressure, and H is the

verticai fiux of heat. Using Eqs. (4), (5), and (6) and tne following
expressions for H and Kn?
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we arrive at
SRf = __~gHkz = z/L (8)
CPEEU*

Observation has shown [3] that in near-neutral conditions S = | so that
Rf = z/L. Hence, z/L is a measure of dynamic stability and thereby is
a means of ascertaining whether or not there is a growth or decay of
furbulent Kinetic e:ergy.

D. Diffusion Theory

The intensity of turbulence, |, is given by Slade [5] as

I Sy == (9)
v v

where the o's represent the standard deviation of the longitudinal (u),
tateral (v), and vertical (w) components of turbulence, V is the average
wind soeed; and x, y, and z refer to coordinate directions. Longitudinal
refers to the direction along the mean wind, and l!ateral fo the per-
pendicular to the mean wind direction. The diffusing power of the atmo-
sphere is directly related fo the |'s. When the average wixd direction
is along the x-axis such that v = 0, then there is no y component and

we can write

%A =%  and % = M (10)
) v

where A is wind direction (azimuth) in radians, and % is the standard
deviation of the inclination of the vector wind in radians (when ¢ = O,
the wind is horizoniail). in praclicai diffusion work the basic probiem
is to relate the measurablie quantities given in Egs. (9) and (10) fo
the dispersion of airborne efflvents under various stability conditions.

(Wﬂ*ﬁm ;
|
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Statistical tneories of turpuient diffusion show that the variance of
particle dirfusion in the y-direction under different condito.s is
given by [6]

yz(f) = 2Kt (+ large) an
y2(+) = v'2 Tz (+ small) (12)
and
T = 1/2 G2 WP (4 intermediate) (13)
y<(t) y

where Gaussian distribution of the particles has been assumed, and where
y(t) = cross wind distance that a particle moves
from some origin
K - eddy diffusion coefficient
+ = time
C, = eddy diffusion parameter in the y-direction
n = stability parauncter
v! = crosswind turbulent fluctuation
u = mean wind speed
The constant K in Eq. (I1) and Cy, in Eq. (13) depend upon the intensity
of furbulence as given in Egs. (5) and {10). While it will not bec shouwn
here, the value of y2(+) in Eq. (12) depends on the total spectrum of
the turbulence. In Lg. (13), DE is a function of the average wind spced,
the variance of the lateral velgci+y fiuctuations, and stabiiity. The

Influence of stability is contained in the parameter n defined from the
wind profile by the relation
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z {(2-n) . .
=1 . : (14)

where V| is measured at z, and V, at z,. Different values of n represent
different stability conditions. Thus, the value of (2 in Egs. (i}1) - (i3),
which determines the distribution of parficles. in the cross-wind direction
(along the y-axis), is related to .the intensity of turbulence given by Eq.
(9), the total energy spectrum of turbulence, variability of wind direc-
tion (Eq. (10)), stability, and average wind speed. As discussed pre-
viously, these variables are interrelated with each one usually expressed
as a function of stability. Thus, the rate of diffusion is related to

the degree of stability. C

E. Meteorological Variables Related to Diffusion Parameters

The meteorological variables most commonly related to atmospheric diffu-
sion near the ground inciude: i) the intensity of turbulence, 2) the
spectrum of turbulence, 3) variability of wind direction (vertical and
horizontal), 4) stability, and 5) wind speed. These parameters are re-
lated in some way tfo K and C,, in Egs. (I1) and (13), o to the produc-
tion terms in the kinetic energy equation for turbulence {Eq. (3)).
Static stability and wind speed near the ground are related through Eq.
(14)., To illuystrate the relationship between stability and the diffusion
coefficients, the following data were taken from page 243 of Atmospheric
Diffusion by Pasquill [7]. ,

Y p e . i

TABLE |. DIFFUSION FARAMETERS VS. ATMOSPHERIC STABILITY A !
}

Stability Ting g+ T ¢y OF) o G
Neutral ‘ -l and 0 - 0.25 0.095-0.14
Moderate inversion +] to +5 0;55 0.052-0.077
Strong Inversion . 0 ., 3.50 0.029~0.074
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The diffus’on coefficient in the lateral direction, C,,, is assumed

to equail that in the vertical direction. Static sfabflify is a funcTion
of wind speed, terrain conditiong, the type of air mass present, cloudi-
ness (or radiation), and other paremeters. |t is observed that the con-
centration of pollutants increases over cities during stable conditions
vhile rapid dispersion takes place during unstable conditions. While the
magnitude of the diffusion coefficient is proportional to instability,
the relaticnship between the concentration of pollutants and stability
conditions does not always exist. For example, mechanical turbulznce may
exist even during inversion conditions, which leads to an increase in C,.
A wide range of values for the diffusion coefficients under different
atmospheric conditions are summarized by Pasqnill {71 and Gifford [6].

A rather wide range of values has been obtained from experimental results.

e TS R S8 pe ) SATENUOEATDOL PRI [ R e

I ol

7
o

DATA

sl

The data utilized in this study were obtained from instruments set up in

an array forming a "T" over distances of 300 meters. The instruments
- utiiized were R. M. Young Company's UYW {(propelier ancmometers) aiong
with unaspirated thin wire thermocouples. The accuracies of these instru-
ments and data, spacing of poles on which instruments were mounted, and
terrain characterisiics have been described by Armendariz et al. [8].
Briefly, the area is composed of hillocks 2 o 3 meters in height and
randomly spaced approximately 5 to 10 meters apart. The distance constant
of the wind insfruments is |.3 meters and data were automatica'!ly col-
lected at a rate of one sample per second. The thermocouples, ~.0025 cm
in diameter and made of copper constantan, have a time constant less than
0.5 seconds Wind instruments were placed at |.5 and 4.0, or 4.0 and 16.0
meters 1n neight on alternate poles in the array. Temperature differences
were recorded between 0.5 and 4.0 meters and between 4.0 and 16.0 meters.
Data were coiiected during the months of January, February, and March of
1970. In general, the collection of data was made over two-hour periods
during both day and night. There were some periods of continuous data
coliection lasting six or seven hours.

OBSERVED RELATIONSHIPS BETWEEN STATIC STARILITY AND

SELECTED DIFFUSION PARAMETERS

Relationships between meteorological variables such as static stability,
, varialions in wind direclion, wind speed, eic., and atmospheric diffusion
parameters are complicated even in relatively simple situations, and cannot

oe specified with confidence in compiex situations. The analysis of the
T-array data presented here is aimed at illustrating some of the complexi-
ties involved as well as some of the relationships between static stability
represented as the difference in temperature between two heights and certain
parameters associated with atmospheric diffusion. The objeciive is to
demonstrate, for the pariod of study chosen, the extent to which a difference

iR S 41
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in temperature between two levels near the ground and the ratio z/L are
related to other paremeters indicative of turbulence and diffusion,

A. Infensity of Turbulience

I. Longitudinal — The longitudinal intensity of turbulence is
represented oy oy, which is the standerd deviation of The fluctuation
along the mean wind flow. The relationships between z/L, AT, and Ou
for selecied heights are shown in Figure 2. The difference in temperature
between the indicated heights in each figure is shown on the ordinate,

%y on the abscissa, while z/L is the third variable plotted in each figure.
isopieths are drawn for vaiues of z/L, and a line was diawn by eve to
represent the reialionship belween AT and oy.

In Figure 2a, o, is a function of AT but the relationship is not linear.
I+ can be seen #haf o, initially increases as AT decreases, bui then de-
as AT decreases further. The ratic z/L decresses as 47 decreases,
but the decrease i3 not regular when z/L becomes less than gpprouimetely
-0.02. In Figure 2a neither AT nor z/L is a good indicator of oy, which
as we recall from the theory presented in Section !l is directly related
to the diffusive power of the atmosphere for a given mean wind speed.
Figure 2b differs from Figure 2a only in that z/L and ¢y are computed
at a height of 4 meters rather than 1.5 meters. The results are similar
and show some indication of a slight increass in o, with a decrease ir
AT. As in Figure 2a, there is a poor relationshiz between z/L and g
when z/L becomes negative (less than -0.05).

fn Figure 2c, where AT is determined between 4 and 16 meters, and z/L
and o, at 4 meters, o is related to AT except when AT is large and
negative. The ratio z/L decreases as AT decreases and o, increases
except at large negative AT. When AT reaches values of -0.5 and less
it no longer indicates the level of turbulence. In this range, z/L
increases as g, increases. When AT exceeds -0.3, both AT and z/L are
related to o.

The fact that relationships between the parameters considcred here change

drastically at different levels in the atmosphere is illustrated in lNigurs
2d. This figure is similar tc Figure 2c with the only change being that
z/L and o, are determined at |6 meters rather than ai 4 meiers. in Tigure

2d, oy increases as AT decreases, but for any AT, oy may vary from approxi-
mately 1.5 o 3 mps. The relavionship between AT and oy is quite weak.
z/L and AT show a similar relationship to o.

2. Lateral -- In Figure 3 the laieral intensity of turbulence, ¢,
is shown as a function of z/L and AT for the same data as in Figure Z.
The relationships between the variables in Figure 3a are the same as those
discussed above for Figure 2a. By comparicon, Figure 3b differs con-
siderably from its counterpart, Figure 2b, Here, o, decreases will.
decreasing AT when AT<-0.5. As AT becomes smaljer, g, varies by a factor

0
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Tigure 2. GRAPHICAL RELATIONSHIPS BETWEEN
AT, o, AND z/L.
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of 2-3 for 3 given value of AT. Except for nesr-neuiral conditions, z/t
is not a good indicatcr of o, and when z/L<-0.1, the reiationship between
z/L and c,, apparentiy has vanished.

In Figure 3c, AT is not related to o,. o, varies from approximately

1.5 to 3.5 for any value of AT. The ratio z/L also is not related to

o, any better than to AT. These rather poor relationships extend tc
Figure 3d, which shows that oy is not related to AT and that oy varies
between | and 4 mps for any given value o* AT. In addition, ther. is no
apparent relationship between z/L and o,.

3. Verticai -- Relationships between z/L, &7, and o, are shown in
Figure 4. Conditions represented in this figure are similar to those in
Figures 2 and 3. |In Figure 4a, o, is a function of AT>G. When AT is
less than this value, o, does not Gepend upch AT. The intensity of the
vertical component of turbulence, o,, increases as z/L decreases io vaiues
ne~r -0.02, btut beiow this vaiue z/L and ¢, are essentiaiiy constant.
Figure 4b is similar to Figure 4a and shows that g, increases with a de-
crease in AT>-0.4, and decreases for smaller vaiiues of AT. in This fiqure,
z/L is a poor indicator of g, for all values.
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Figure 4c is somewhat similar to Figures 4a and b and shows 0, to be

related to AT, but the relationship is not linear. oy increases as AT
decreases to values above about -0.3, but as AT becomes smaller O, remains
essentially constant, with some slight fendency to decrease as AT approaches
-1.0. The ratio z/L decreases with an increase in oy for all AT except

for aT <-0.8, in which case larger negative values of z/L are associated
with smaller values of g,.

Figure 4d differs from Figures 4a-c in that 0, increases as AT decreases
throughout the entire range of AT. |In addition, z/L decreases as ¢, in-
creases and 8T decreases. In this figure, both AT and z/L are related to
oy in a reasonably definite way.

B. Variability of Wind Direction

¢

The variabiiity of wind direction is considered in Figurc 5. The condi-
tions in this figure are similar to those in Figures Z-4 except that the
standard deviation of component wind speeds has been replaced by 0y. As
we can see from Eq. (10), oy is a measure of the intensity of turbuience
for a given mean wind speed. In Figure 5a, o0 is not related to JT: in
addition, z/L is not related to 6y in any definite way. When z/L <-0.02,
Oy may vary by a factor of about 4 while z/L remains essentially constant.
Similar relationships are observed in Figure 5b except that when z/L
becomes <-0.1, larger values of op are associated with smaller values of
z/e.
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Figure 5- is sim
and iS 8 TUNCTIG
AT of approximately -0.8C. For z/L <-0. 04, op increases zs z/L decreases.
Thus, AT is nof a good indicafor of gy, while z/L is vaiic only af valees
<0.04. Similer relationships are observed in Figure 3d except that when
zfi approaches -0.i, g, fends to increase as z/L decreases.

o} =

far to Figure 5b. Again, 9 is not & tunctior of Al
T Z

.'. ~ - - 2 .1.
i O lv -uc-l ..It. <=3 v.w, ','-l\—n wr-’tsbu‘\-;r-us G 8

Figures 6a and 6b sho.. og at 1.5 meters versus AT beiween 0.5 and 4.0
mefers and {.5 and 4.0 meters for the period Januvary-March 1970. Figure
€a differs considerably from Figure 6D with the difference due entirely
fo a slight change in the layer over which A7 was measured. In excess

of 150 hours of data are plotied in each part of these figures with each
point representing a i5-minute average value. This larger sampie of dats
agrees in general with the results from the much smaiier sempie considered
in Figure 5. The major ditference is that the range of ga for a given AT
is much larger in Figures > and 6b than in Figure 5. Record et ai. [2]
found g4 to vary with wine speed during stable and unstabie conditions;

bneover  dhic ~oladinnchin wazs not ovaminod

ISRV 3 PEIB s o Nrrial O s oy

from the above discussicn it is evident that z/L and AT are somewhet
related. Of course, they should be since Al appears in the Richardson
number (Ri) and z/L = Ri for near-neutral cond ticns. The experimental
relationship is shown in Figure 7 for the period Jjanuary-March i970. The
relationship is quite poor. The scatter when |z/L| and ]AT] are large
suggests that, at most, one or possibly neither of these parameters can
be used as an indicator of the level of turLulence. In principle, z/L
should be the tetter indicator; however, some refinements in its compu-
tation may be necessary when aimospheric conditions vary greatly from
neuvtral.

C. NWind Speed

The relationships betwzen the longitudinal (u) and lateral (v) comporent
wind speeds at 1.5 meters, and T patween 0.5 - 4.0 and 1.5 - 4.0 meters,
are shown in Figures 8a and 8b for the period January-March 1970. For
both wind components, the average wind speed increases as AT decreases
for a7 > 0. When AT < 0, the functicnal dependence disappears. A line
has been drawn by eye through the points on each part of the figure when

AT > O. The ronge in wind speed for a aiven AT is large, parvicuiariy
for the iaterai component, but there is little doubt that 2 trend is

present in the data when AT is nositive.

CONCLUSIONS

A. For the Layer 1.5 - 4.0 Meters

The standard deviatiors of al: three components of the wind vector at
I.5 and 4.0 meters (o, 0,. o) generally increase with a decrease in AT

16
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(1.5 - 4.0 meters) when AT > ~0.25C, but when &T <-0.25C,’ the magnitude
of the o's generally becomec smalier 3s AT becomes more negetive. z/L
also decreases as the o's increase for vaiues of z/L > -6.02, but for-
smaller values of z/L no general relationship appears toc hold. The

cdordad Aotk tan L sofmd AL emmd e I fe e f
Stenhdeid aeviation OF wind direction “7/\) i3 nct related +c AT or z/L.

—ecsepa

B. For the Layer 4.0 - 6.0 Meters -

Standard deviations of the i1ateral component (5y} and wind direction
(op) are not related to AT or z/L for any range of vaiues. The standard
deviations <. the longitudinal and vertical components {g, and oy) in-
crease with a decrease in' AT (4.0 - 16.0 meters) for AT > -0.25C, but
when AT < -0.25C, the magnitude of the o's either remains constant or
becomes smaller as AT becomes more negative. At the top of the layer
: (16.0 meters), o, and o, tend to increase with a decrease in AT althoéugh
i the relaflonshnp is poor.

C. Wind Speed vs- Stability ‘

-I

P P o e b 2% 1128 . S =
ins wind spesd increasas as The degree of stabi_ sizbiiit, Zecresses,

but only during stable conditions. During uns*able conditions (de-
crease of femperature with height), the wind speed may vary from [-8 m/sec
and is independnn'l’ of the donrno of’ !nsfa‘bl!l"'y.

LRES- )

D. Relationship Befween z/L and AT

es as AT increases in near-neutral conditions, buf the
p diminishes vhen the dagrae of stability is large cr gmaii.

E. Stability vs Diffusion Pates

If we gssume that the rate of diffusion is determined by the intensity

of turbulence (fluctuations about the mean), 4T measured Through a

shal low layer near the ground is not a gocd indicator of diffusion rates,
particularly when the atmosphere is statically unstable (AT negative).

z/L does not appear to be a significantly better indicator than AT during
highly unstable conditions.

o AT TR IR VFTVRE SR Bl S SR (AN rep e r (] 7 B e 4 M A KW PR e el )
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